当前位置:首页 > 范文 > 说课稿

相似三角形说课稿

时间:2023-08-16 10:34:12
相似三角形说课稿

相似三角形说课稿

作为一名专为他人授业解惑的人民教师,时常需要编写说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。说课稿应该怎么写呢?以下是小编收集整理的相似三角形说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

相似三角形说课稿1

今天,我的说课将分三大部分进行:一、说教材;二、说教学策略;三、说教学程序。

一、说教材

从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述

1、本课内容在教材中的地位

本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。

从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。

2.学习目标

知识与技能方面:

探索相似三角形、相似 ……此处隐藏10961个字……如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比(或相似系数),这里,必须注意的是顺序问题和对应问题。例如:△ABC∽△DEF,那么是△ABC与△DEF的相似比,而是指△DEF与△ABC的相似比,而这两相似比互为倒数。由此可说明全等三角形是相似三角形当相似比等于l时约特殊情况。

4.在教学预备定理前,可先复习上节课学习的P215页例6的结论[平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。]对命题的引出,可以先画出一个三角形,然后作出平行于其中一边,并且和其他两边相交的直线,使学生直观地得到:所截得的三角形与原三角形相似,从而引出命题平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。即如图,若DE∥BC,则△ADE∽△ABC,然后分析命脉题的结论是要证明两个三角形相似。可以问学生:

当没有判定两个三角形相似约定理的情况下,应考虑利用什么方法来证明相似?如获至宝果用定义来证,应从哪几个方面来证?然后按教材内容给出证明。强调指出每个比的前项是同一个三角形的三边,而比的后项为另一个三角形的三边,位置不能写错。

因此我们可得(预备)定理:

定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

以教材的内容为出发点,启动学生自发学习,引导学生探究思维,以达知识目标。为了巩固本节保所学的知识,安排课本P224页练习1、2做为课堂练习,之后进行提问与调板,了解学生掌握知识的情况。

最后小结本节课的知识要点及注意点。小结之后布置作业和预习。

《相似三角形说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

Copyright © 2023 学古典网 www.xuegudian.com 版权所有